Задания
Версия для печати и копирования в MS Word

Раз­ность 2530 − 2411 окан­чи­ва­ет­ся циф­рой ...?

1) 5
2) 1
3) 2
4) 3
5) 4
Спрятать решение

Ре­ше­ние.

При пе­ре­мно­же­нии чисел по­след­няя цифра ре­зуль­та­та опре­де­ля­ет­ся по­след­ни­ми циф­ра­ми мно­жи­те­лей, при­чем 25 · 25 окан­чи­ва­ет­ся на 5, зна­чит, и любая сте­пень 25 окан­чи­ва­ет­ся на 5. Ана­ло­гич­но

24 в сте­пе­ни левая круг­лая скоб­ка 11 пра­вая круг­лая скоб­ка =24 в сте­пе­ни левая круг­лая скоб­ка 10 пра­вая круг­лая скоб­ка умно­жить на 24= левая круг­лая скоб­ка 24 в квад­ра­те пра­вая круг­лая скоб­ка в сте­пе­ни 5 умно­жить на 24,

то есть за­кан­чи­ва­ет­ся той же циф­рой, что и  левая круг­лая скоб­ка 4 в квад­ра­те пра­вая круг­лая скоб­ка в сте­пе­ни 5 умно­жить на 4=16 в сте­пе­ни 5 умно­жить на 4. За­ме­тим, что 16 умно­жить на 16 окан­чи­ва­ет­ся на 6, зна­чит, и любая сте­пень 16 окан­чи­ва­ет­ся на 6. Зна­чит, это число за­кан­чи­ва­ет­ся на ту же цифру, что и 6 умно­жить на 4=24. Оста­лось вы­честь из числа, за­кан­чи­ва­ю­ще­го­ся на 5, число, за­кан­чи­ва­ю­ще­е­ся на 4. По­лу­чит­ся число, за­кан­чи­ва­ю­ще­е­ся на 1.

 

Пра­виль­ный ответ ука­зан под но­ме­ром 2.


-------------
Дублирует задание № 580.
Источники: