Вариант № 1451

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Тип 5 № 1105
i

Рулон обоев имеет ши­ри­ну 60 см и длину 10 м. Не­об­хо­ди­мо окле­ить стены в ком­на­те, раз­мер ко­то­рой 3 м × 4 м, вы­со­той 2,5 м. Общая пло­щадь окна и двери 4 м2. Най­ди­те наи­мень­шее ко­ли­че­ство ру­ло­нов, ко­то­рое нужно ку­пить.



2
Тип 5 № 1008
i

Лест­ни­ца дли­ной 12,5 при­став­ле­на к стене так, что верх­ний конец лест­ни­цы на­хо­дит­ся от земли на вы­со­те 12 м. Най­ди­те рас­сто­я­ние от ее ниж­не­го конца до стены.



3
Тип 5 № 2032
i

Ши­ри­на пря­мо­уголь­ной гряд­ки в 4 раза мень­ше ее длины и равна 5 м. Най­ди­те сто­ро­ну пе­соч­ни­цы квад­рат­ной формы рав­но­ве­ли­кой этой гряд­ке.



4
Тип 5 № 1643
i

Раз­ме­ры плит­ки 2 дм х З дм. Не­об­хо­ди­мо уло­жить плит­кой уча­сток пря­мо­уголь­ной формы раз­ме­ром 5 м × 6 м. Ука­жи­те вер­ное вы­ска­зы­ва­ние.

 

Графа АГрафа В
Ко­ли­че­ство уло­жен­ных пли­ток250 пли­ток


5
Тип 5 № 993
i

Ука­жи­те вы­ра­же­ние для вы­чис­ле­ния пе­ри­мет­ра дан­ной фи­гу­ры:



6
Тип 5 № 1635
i

Какая фи­гу­ра имеет ровно 4 оси сим­мет­рии?



7
Тип 7 № 2035
i

Опре­де­ли­те сколь­ки­ми спо­со­ба­ми можно вы­брать 3 со­глас­ные и 1 глас­ную буквы из слова «ло­га­рифм».



8
Тип 5 № 1015
i

Пе­ри­метр тре­уголь­ни­ка 85 см. От­но­ше­ние длины пер­вой сто­ро­ны к длине вто­рой сто­ро­ны равно 1:2, от­но­ше­ние длины вто­рой сто­ро­ны к длине тре­тьей сто­ро­ны равно 3:4. Най­ди­те раз­ность длин наи­боль­шей и наи­мень­шей сто­рон тре­уголь­ни­ка.



9
Тип 5 № 1860
i

Пло­щадь квад­ра­та 36 см2. Если одну из его сто­рон уве­ли­чить на 6 см, а дру­гую умень­шить на х см, то по­лу­чит­ся пря­мо­уголь­ник, пло­щадь ко­то­ро­го равна 60 см2. Най­ди­те мень­шую из сто­рон по­лу­чен­но­го пря­мо­уголь­ни­ка.



10
Тип 5 № 2036
i

Пря­мо­уголь­ный тре­уголь­ник ABC, об­ра­зо­ван тремя по­лу­кру­га­ми. Вы­чис­ли­те пе­ри­метр этого тре­уголь­ни­ка.



11
Тип 5 № 1920
i

Рас­сто­я­ние между гла­за­ми че­ло­ве­ка и экра­ном те­ле­ви­зо­ра долж­но быть не менее 5d м, где d — длина диа­го­на­ли экра­на. На каком ми­ни­маль­ном рас­сто­я­нии от те­ле­ви­зо­ра с экра­ном пря­мо­уголь­ной формы и раз­ме­ра­ми 40 см х 30 см нужно по­ста­вить диван, чтобы про­смотр те­ле­ви­зо­ра был без­опа­сен для глаз?



12
Тип 5 № 1913
i

Ши­ри­на ка­би­не­та ма­те­ма­ти­ки на 3 м ко­ро­че длины. Если пло­щадь ка­би­не­та 54 м2, тогда длина и ши­ри­на равны



13
Тип 5 № 2007
i

Дома А и С стоят на оди­на­ко­вом рас­сто­я­нии от дома В вдоль пря­мо­ли­ней­ной до­ро­ги. Дом А на­хо­дит­ся на рас­сто­я­нии 62 м от до­ро­ги, а дом С — на рас­сто­я­нии 48 м от до­ро­ги, тогда дом В рас­по­ло­жен от до­ро­ги на рас­сто­я­нии?



14
Тип 5 № 1290
i

Дана рав­но­бо­кая тра­пе­ция с ос­но­ва­ни­я­ми 16 и 24 и одним из углов 60°. Вы­бе­ри­те вер­ное утвер­жде­ние.

 

Графа АГрафа В
Пе­ри­метр тра­пе­ции51


15
Тип 5 № 994
i

Пе­ри­метр боль­шо­го тре­уголь­ни­ка равен Q. Каж­дая сто­ро­на тре­уголь­ни­ка раз­де­ле­на на три рав­ные части, и точки де­ле­ния со­еди­не­ны от­рез­ка­ми так, как по­ка­за­но на ри­сун­ке. Пе­ри­метр ма­лень­ко­го тре­уголь­ни­ка равен



16
Тип 5 № 1905
i

На ри­сун­ке че­ты­ре оди­на­ко­вых пря­мо­уголь­ни­ка со­став­ля­ют пря­мо­уголь­ник ABCD. Пе­ри­метр ABCD равен 70. Най­ди­те пло­щадь од­но­го из оди­на­ко­вых пря­мо­уголь­ни­ков, со­став­ля­ю­щих пря­мо­уголь­ник ABCD.



17
Тип 5 № 2031
i

Пе­ри­метр боль­шо­го тре­уголь­ни­ка равен Q. Каж­дая сто­ро­на тре­уголь­ни­ка раз­де­ле­на на три рав­ные части, и точки де­ле­ния со­еди­не­ны от­рез­ка­ми так, как по­ка­за­но на ри­сун­ке. Пе­ри­метр ма­лень­ко­го тре­уголь­ни­ка равен



18
Тип 5 № 1890
i

Квад­рат раз­бит на пря­мо­уголь­ни­ки, пе­ри­мет­ры двух из них ука­за­ны ри­сун­ке. Най­ди­те длину сто­ро­ны квад­ра­та.



19
Тип 5 № 1872
i

B со­став ме­тео­ри­та вхо­дит 91% же­ле­за, 8% ни­ке­ля и 1% ко­баль­та.

 

Графа AГрафа В
Гра­дус­ная мера цен­траль­но­го угла, со­от­вет­ству­ю­ще­го со­ста­ву же­ле­за327°


20
Тип 5 № 999
i

Hа клет­ча­той бу­ма­ге раз­ме­ром 4×6 изоб­ра­же­ны два круга так, что центр од­но­го лежит на гра­ни­це дру­го­го. Длина хорды АВ равна



21
Тип 5 № 1277
i

Угол сек­то­ра со­став­ля­ет  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби пол­но­го угла. Гра­дус­ная мера угла дан­но­го сек­то­ра равна



22
Тип 5 № 1032
i

Ис­поль­зуя дан­ные ри­сун­ка, опре­де­ли­те пло­щадь коль­ца (π ≈ 3,14)



23
Тип 5 № 1960
i

Какой наи­мень­ший угол со­став­ля­ет ми­нут­ная и ча­со­вая стрел­ка в 16 часов 10 минут?



24
Тип 5 № 1980
i

На ри­сун­ке изоб­ра­же­на окруж­ность с цен­тром в точке O и ра­ди­у­сом 2 см. По дан­ным ри­сун­ка най­ди­те длину вы­де­лен­ной линии.



25
Тип 5 № 1851
i

Oпре­де­ли­те пло­щадь фи­гу­ры на ри­сун­ке, если пло­щадь 1 клет­ки равна 1 см2.



26
Тип 5 № 1024
i

Раз­ме­ры клет­ки 1 см х 1 см. Дан­ная фи­гу­ра рав­но­ве­ли­ка квад­ра­ту со сто­ро­ной, рав­ной



27
Тип 5 № 1680
i

Раз­ме­ры клет­ки 1 см × 1 см. Дан­ная фи­гу­ра рав­но­ве­ли­ка пря­мо­уголь­ни­ку с дли­ной 10 см и ши­ри­ной, рав­ной



28
Тип 5 № 1017
i

Раз­ме­ры клет­ки 1 дм x 1 дм. Дан­ная фи­гу­ра рав­но­ве­ли­ка пря­мо­уголь­ни­ку с дли­ной 10 дм и ши­ри­ной, рав­ной



29
Тип 5 № 1662
i

Фи­гу­ра со­став­ля­ет­ся из квад­ра­тов так, как по­ка­за­но на ри­сун­ке. В каж­дом сле­ду­ю­щем ряду на 2 квад­ра­та боль­ше, чем в преды­ду­щем. Число квад­ра­тов в 15-м ряду равно



30
Тип 5 № 2025
i

Hа клет­ча­той бу­ма­ге раз­ме­ром 8×12 изоб­ра­же­ны два круга так, что центр од­но­го лежит на гра­ни­це дру­го­го. Най­ди­те пе­ри­метр P за­штри­хо­ван­ной фи­гу­ры. В от­ве­те ука­жи­те пе­ри­метр P к длине одной окруж­но­сти.



31
Тип 5 № 1496
i

Асия от­ме­ти­ла на пря­мой линии 5 синих точек. В каж­дый про­ме­жу­ток между си­ни­ми точ­ка­ми она по­ста­ви­ла крас­ную точку, а потом в каж­дый про­ме­жу­ток между крас­ной и синей точ­ка­ми она по­ста­ви­ла чер­ную точку. Сколь­ко всего точек по­лу­чи­лось?



32
Тип 5 № 1965
i

Тал­гат на­чер­тил мо­дель са­мо­ле­та, опре­де­ли­те его пло­щадь, если раз­мер клет­ки 1 × 1.



33
Тип 5 № 1934
i

Учи­ты­вая, что пря­мые a и b па­рал­лель­ны, по ри­сун­ку най­ди­те x.



34
Тип 5 № 1852
i

Tри села А, В, С рас­по­ло­же­ны вдоль пря­мой до­ро­ги. Из­вест­но, что село В не на­хо­дит­ся рядом с селом С. Най­ди­те рас­сто­я­ние между се­ла­ми В и С, если рас­сто­я­ние между А и В равно 2 км, между А и С равно 5 км.



35
Тип 5 № 1982
i

Длина от­рез­ка, изоб­ра­жа­ю­ще­го рас­сто­я­ние на карте от Се­ми­па­ла­тин­ска до Усть-Ка­ме­но­гор­ска, равна 14 см. Мас­штаб карты 1 : 500 000. Най­ди­те длину от­рез­ка между го­ро­да­ми на карте, со­став­лен­ной в мас­шта­бе 1 : 750 000.



36
Тип 5 № 1500
i

Длина от­рез­ка AD на 5 мень­ше длины от­рез­ка AB и на 4 боль­ше длины от­рез­ка AC. Длина AC в три раза мень­ше длины от­рез­ка CB. Най­ди­те длину от­рез­ка AB, если точки A; B; C; D рас­по­ло­же­ны, как по­ка­за­но на ри­сун­ке.



37
Тип 5 № 1867
i

Hа одной пря­мой на рав­ном рас­сто­я­нии друг от друга стоят три те­ле­граф­ных стол­ба. Край­ние на­хо­дят­ся от ров­ной до­ро­ги на рас­сто­я­ни­ях 18 м и 48 м. На каком рас­сто­я­нии от до­ро­ги на­хо­дит­ся сред­ний столб?



38
Тип 5 № 2033
i

Cколь­ко квад­ра­тов не за­кра­ше­ны у два­дца­той фи­гу­ры?



39
Тип 5 № 1455
i

Если пло­щадь одной клет­ки равна 1 кв. ед., то пло­щадь фи­гу­ры равна



40
Тип 5 № 1906
i

Нить дли­ной 10 дм раз­ре­за­ли на части по 2 дм каж­дая. Сколь­ко сде­ла­ли раз­ре­зов?



41
Тип 5 № 1634
i

Сто­ро­ну квад­ра­та уве­ли­чи­ли на 20%. На сколь­ко про­цен­тов уве­ли­чит­ся пло­щадь квад­ра­та?



42
Тип 5 № 1065
i

Най­ди­те пло­щадь стены за­вод­ско­го зда­ния изоб­ра­жен­но­го на ри­сун­ке.



43
Тип 5 № 1836
i

Kаждый ма­лень­кий тре­уголь­ник яв­ля­ет­ся рав­но­сто­рон­ним тре­уголь­ни­ком, пло­щадь ко­то­ро­го равна еди­ни­ца. Пло­щадь са­мо­го боль­шо­го тре­уголь­ни­ка равна



44
Тип 5 № 1992
i

Hай­ди­те пе­ри­метр квад­ра­та, если из­вест­на пло­щадь за­кра­шен­ной фи­гу­ры.



45

Две смеж­ные ком­на­ты имеют общую стену. Длина пер­вой ком­на­ты 5 м, длина вто­рой ком­на­ты 6 м. Най­ди­те ши­ри­ну ком­нат, если пло­щадь пер­вой ком­на­ты на 4 м2 мень­ше пло­ща­ди вто­рой ком­на­ты.



46
Тип 5 № 1103
i

Пе­ри­метр фут­боль­но­го поля пря­мо­уголь­ной формы равен P. От­но­ше­ние длины к ши­ри­не равно 8 : 5. Пло­щадь поля S равна



47
Тип 5 № 1950
i

Най­ди­те пло­щадь зе­мель­но­го участ­ка, изоб­ра­жен­но­го на ри­сун­ке.



48
Тип 10 № 1650
i

Най­ди­те сколь­ко ку­би­ков, можно сло­жить в ящик с раз­ме­ра­ми 1 м × 2 м × 1 м, если ребро ку­би­ка 10 см?



49
Тип 10 № 1875
i

Длина класcной ком­на­ты равна 4 м. Ши­ри­на со­став­ля­ет 75% от длины, а вы­со­та —  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби от ши­ри­ны. Най­ди­те объем класс­ной ком­на­ты.



50
Тип 10 № 1095
i

Из куба, с реб­ром рав­ным 6 см вы­ре­за­ли пря­мо­уголь­ный па­рал­ле­ле­пи­пед, у ко­то­рою сто­ро­ны ос­но­ва­ния равны 2 см. Най­ди­те объём остав­ше­го­ся тела.



51
Тип 10 № 1984
i

Oбъём шара уве­ли­чил­ся в 64 раза. Как из­ме­нил­ся ра­ди­ус шара?



52
Тип 10 № 1945
i

В 10 м3 со­дер­жит­ся 12 кг воз­ду­ха. Сколь­ко кг воз­ду­ха со­дер­жит­ся в по­ме­ще­нии дли­ной 3,2 м, ши­ри­ной 3,5 м и вы­со­той 2,6 м?



53
Тип 10 № 1842
i

Cколь­ко сена (в кг) вме­ща­ет се­но­вал раз­ме­ра­ми 6 м × 3 м × 4 м, если тюк сена имеет раз­ме­ры 0,8 м × 0,4 м × 0,5 м и массу 20 кг?



54
Тип 10 № 2029
i

Hай­ди­те пло­щадь по­верх­но­сти ке­ре­ге (бо­ко­вая часть юрты).



55
Тип 8 № 1279
i

Ра­у­шан стоит в оче­ре­ди. Сколь­ко че­ло­век стоит в оче­ре­ди, если Ра­у­шан с на­ча­ла 15-ая, а с конца оче­ре­ди 17-ая.



56
Тип 8 № 1069
i

При встре­че че­ты­ре друга об­ме­ня­лись ру­ко­по­жа­ти­я­ми. Сколь­ко по­лу­чи­лось ру­ко­по­жа­тий?



57
Тип 8 № 1887
i

Опре­де­лив за­ко­но­мер­ность, ука­жи­те сле­ду­ю­щую дробь:  дробь: чис­ли­тель: 5, зна­ме­на­тель: 7 конец дроби ;  дробь: чис­ли­тель: 7, зна­ме­на­тель: 11 конец дроби ;  дробь: чис­ли­тель: 9, зна­ме­на­тель: 15 конец дроби ; ...



58
Тип 8 № 1689
i

Уста­но­ви­те за­ко­но­мер­ность и знак во­про­са за­ме­ни­те чис­лом?



59
Тип 8 № 1062
i

Когда моему отцу был 31 год, мне было 8 лет. Сей­час отец стар­ше меня в 2 раза. Сколь­ко лет мне сей­час?


Завершить работу, свериться с ответами, увидеть решения.